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1. Introduction

A theory of possibility was first proposed by Zadeh in 1978 (Reference 1) as
a means to quantify judgement. The theory provides a formalism to treat vague,
imprecise or incomplete information which is different from the approaches by
probability theory and interval analysis. Each of these three theories emphasize
different aspects of vagueness and thus complement each other. Possibility theory
is particularly adequate for the development of vulnerability measures because,
first, the basic information in vulnerability problems is typically vague but not
random and, second, the theory provides a natural means to rank the relative
outcomes from a combination of targets and threats. A comprehensive summary of
the present status of possibility theory is given in Reference 2.

The relation between possibility theory and interval analysis is easy to
describe because interval analysis is a limit case of possibility theory. More
preci-ely, for interval analysis one assumes that an event either does or does not
belong to a certain category, whereas in possibility theory the event is allowed to
belong more c,: less to the category. This is expressed by assigning to the event
and to its contrary a lesser or larger degree of possibility (between 0 and I). These
two possibilities are only weakly related: if an cvent is possible, then this does not
prevent its contrary to be possible, too. (The law of the excluded middle is
weakened in the context of possibility measures). The complement (with respect
to 1) of the degree of possibility of the contrary event can be interpreted as the
necessity (certainty) of the event itself. Thus, in possibility theory an event is

.1.-j..At - tyw, p-;;-.!ty mea...eF .- a degree of possibility n1 and a degree
of necessity N.

The relation between possibility theory and probability theory is more
esoteric. They are connected via the concepts of plausibility and belief within the
framonwnrk of Dempster-Shafer theory. In order to handle incomplete data
Dempster introduced the concepts of iowcr and upr;r prbsl;ip . The actual
probability of an event (with complete and disjoint elements) falls between these
limits. If the data are crisp and certain other requirements are satisfied, then the
lower probability (belief) corresponds to a degree of necessity and the upper
probability (plausibility) corresponds to a degree of possibility. Hence, if it makes
sense to assign a probability to an event, then it likely has a value somewhere
between the degrees of necessity and possibility. The generalization which is
achieved by using possibilistic instead of probabilistic measures provides a natural
way to handle data which are not exact, but given, e.g. by an interval. Probability
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measures generally apply to precise but differentiated items, whereas possibility
measures are more adequate for the representation of imprecise and possibly
coherent information. The most striking difference between probability and
possibility is that the probability P(A) of an event completely determines the
probability P(A,) of its contrary: P(A)=1-P(A). The corresponding possibility
measures satisfy only the relations I1(A)+ 11() 1 and N (A)-r N (A-)! 1.

In applications to vulnerability analysis one is particularly interested in
possibilistic pattern matching. Indeed, in order to determine whether a system
component eEE is killed in the presence of a threat r(T, one might define in the
event space G - (E x T) a set K of all such events for which the system component is
assumed to be killed, and then check whether the given element g= (e,t) belongs to
K. If the descriptions of g and K are vague then g might match an element of K to
a larger or lesser degree. Possibility theory allows one to associate with such a
partial matching a degree of possibility IlK(g) and a degree of necessity Nx(g) that
e is killed. Once H K and NK are known for all c' mponents of a s~stem, then the
corresponding IIK and NK for the whole system are computed by aggregation of the

individual resi'Its using logical "and/or" rules in a fault tree.

This report is a short description of the concepts anj techniques that are
needed for the application of possibility theory to vulnerability problems. In
Section 2 we discuss the computation of kill possibility measures for an elementary
system component. Section 3 outlines the aggregation of elementary possibilities to
obtain the possibility measures for a kill of a system.

2. Possibilistic Vulnerability Criterions.

2.1. Crisp Kill Criterions.

To determine the vulnerability of a system, generally the system is broken
down into components, which are in turn broken down into subcomponents, etc.
until at the lowest level one has a bet of elementary components. The state of each
elementary component is assumed to be either "intact" or "killed", and is indicated
by a 1 or 0, respectively, in a state vector where each vector componcnt repre3ents
the state of an elementary system component. The state of the system is calculated
from the binary state vector of the elementary components by logical aggregation
which successively yields state indicators for highcr level -r.)tem comr,",n,,ts. At
those levels, the state indicators generally can have values in the interval [0,1]
indicating the level of operability of eseh system component. (Alternatively the
computations might yield probabilities of damage. We shall not discuss the pro and
contra of various methods of aggregation and/or interpretation of the results. Our
interest is in the general approach which consists of an estimation of the state of
low level components and aggregation to obtain the state of higher level
components). The final result of the aggregation algebra are indicators of the state
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of the who)- ,stem. If the system encounters a specific threat then the state vector
of the e'. entary components changes and the aggregation yields state indicators
of t', jew state of the system due to the threat. Hence one basic problem in
vulnerability estimates is the definition of a threshold for the threat above which
the state of an elementary component is affected.

Let the kill criterion of an elementary component be expressed by the
equation

C(e,t) 2> 0 (2.1)

where e is a parameter describing the component and t i, a parameter which
specifies the threat. C(e,t) is a decision function (in a probabilistic model it may
also depend on random variables). Let it determine the outcome of a pairing of e
and t by the convention

C(et) < 0 -* component intact (2.2)

C(e,t) 0 - component killed

or

{ S '(e) if C(e, ) < J
S (et) 0f e:' (2.3)( 0 if C (e, t); ! ,

wAhere S -(e) and S (e,t) are the states of the elementary cimponent before and
after app~ica:ion of the threat, respecti;ely.

We illustrate in Figure 1 the notion of a decision func:-on in a case where e

and t are scalar parameters, and the zero level of the decisi )n function defines a

curve in the e.r-plane. A specific combination of component ind threat is given by
particular values for e andt which define a point in the event ilane. Depending on
the location of that point with respect to the decision curve C = 0 the component is
assumed to be either intact or killed.

Several generalizations of this situation are needed in p:actice aside from the
obvious that e and t usually are vectors. First, the descriptors e and t might be
known only approximately and, second, the decision function C might be only
defined within some bounds. We assume that these inaccuracies are defined in
terms of fuzzy numbers and functions, that is, by membership functions ml'ich

express the possibility of the occurrence of a specific threat r and target element e,
and which define possible locations of the decision bound C(e,t)=O in the event
space.

As an example, assume that the caliber of a threat projectile is known to be
within certain bounds. Then we assign positiv2- membership values (less or
equal 1) to calibers within these bounds and zero membership values to all other
calibers. These membership values then define the fuzzy set "caliber of the
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threat". Approximate target descriptions are handled correspondingiy.
Approximate decision functions define, insteLd of a crisp decision surface as a
solution of the equation C(e,t)=O, a fuzzy surface as the solution of a fuzzy
equation which represents a gradual transition between "kill" and "intact"
situations. We assume that the gradual transition again is expressed by a
corresponding membership function. An example of such a representation is given
in the next section.

2.2. Possibilistic Decision Bounds.

One can treat the kill criterion (2.2) as a pattern matching problem because
the condition C(e,t) !O defines in the event space G=(ExT) a subset K of
unfavorable combinations of e and t. Given a particular event g=(e,t) one is
interesLed to determine whether this datum matches any of the elements in K, that
ii, whether gcK. This is a pattern matching problem. If g and/or K are only
approximately given, then a matching to a larger or lesser degree is a natural
outcome. Measures of the degree of matching are provided by the concepts of
possibility theory (Reference 3). In this section we consider the special case where
the decision function is fuzzy and the events g are crisp. In the next section we
shall consider the general case where the decision function as well as the events are
fuzzyv.

We indicate fuzzy functions by a tilde and let the decision be specified by a
fuzzy function C(eat). The decision equation C(e,t)=O defines in the event space a
fuzzy surface (Reference 4) which is the fuzzy bound of the set k containing the
"kill" patterns. (The set is fuzzy because its boundary is fuzzy). Figure 2 shows a
fuzzy bound in a one-dimensional event space, where C=0 defines a fuzzy
number, or a "fuzzy point" as a fuzzy segment of the number line. For
convenience we shall assume in our examples that fuzzy numbers have trapezoidal
membership functions as shown in the figure. The interval [x,,x 2] is called the core
of the number, and the interval [x 1 -x 3 , x!+x 4] is called the support of the
number. Fuzzy numbers X- with this type of membership functions can be
conveniently represented by the quadruple (X1 ,x2,x 3 ,X4 ). If the number is crisp, say
x0, then its represents-,ion is (x0,x0 ,0,0). In the present example the fuzzy number
in Figure 2 is meant to be the solution of a fuzzy equation C(x)=0. We assume
that there exists a corresponding crisp equation C(x)=0 which has a solution x0

vithin the core of the fuzzy solution.

Let pj (x) be the membership function of a fuzzy number . The degree of

possibility that a crisp number a is smaller than Y (is to the left of y-') is a fuzzy
number with the membership function (Reference 2)
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p,-.(a) = sup A,() (2.4)

The degree of neressity that a is smaller than Y is defined by the membership
function

V.<7(a) = inf ( 1-IL,(E) (2.5)

Figure 3 shows these possibility and recessity membership functions for a fuzzy
boui, T with the membership function shown in Figure 2. If the wound y is a crisp
number then there is only one crisp segment of the number line where the crisp
numbers are less than y. In zontrast, if the bound is fuzzy then th-!rt: are two fuzzy
segments, defined by the membership functions p and v, and representing the
possibility and necessity, respectively, that a crisp number is less than Y.

The generalization to a multi-dimensional situation is simple. Let the bound
of K be given by a membership function Rie 0 (e.t), and let the corresponding crisp
equation C(e,t)=O define a crisp decision bound within the core of ILC-O . Then
the possibility that the pairing g= (e,t) results in a kill of the component e is

l C-t(e~t) if C(e,r) < 0

pK(e,t) = pg,-(e,t) = [. 1 if C(e,t) < 0 (2.6)

The necessity that the pairing g results in a kill of e is

0 if C(et) < 0VK(er) = vg k(e't) = 1 -- LC- (ej) if Cte,r) ;-- 0 (2.7)

The membership functions PK and VK define in the event space the fuzzy
subsets of possibility and necessity, respectively, that a crisp event corresponds to a
kill. We call these subsets K1I and KN. If the decision criterion is crisp then the
subsets are identical ordinary crisp subsets.

2.3. Pos:ibilistic Events.

We now consider the case where the component as well as the threat are
given by sets of possible values of e and t. Let the functions rrFE(e) and n'T(t) be
the degrees of possibility that e and r actually occur. Given those possibiities, one
would like to know the possibility and necessity that the event g= ke,t) corresponds
to a kill situation.

In the event space G the possibility of the event g= (,j) has the membership
function

ITG(e,t) m min { E(e), iTT(t) } (2.8)

I t i lllllli il 5



If e and r are scalars, and "tE(e) and -trT(t) are trapezoidal functions then "rG(e,t)
is a frustrated pyramid in the e,e,ir-space as shown in Figure 4. itG(e,•) defines a
fuzzy subset " in the event space. In Figure 4 this subset is a fuzzy point in a two-
dimensional space. The possibility that this point corresponds to a kill situation is
measured by the degree of possibility that i matches a point within the subset KII
def'ned by C(e,t)>O. That possibility is calculated as follows (Ret. 2, p.25;
Ref. 3, p.316):

I ( ) = IlgJ = sup min { 'TG(e,t), p(e,t) } , (2.9)
ejg

where PK is the membership function of the subset KII. The necessity of a match is
calculated by using the membership function VK of the subset KN and the formula

NK(-) = N 1g = I - sup min { lGe(e,'), I--VK(e,t) } . (2.10)
eJ

Figure 5 shows a number o, possible situa::Thas in the case where the event
space is two-dimensional and the decision function C(e,t) is crisp. The event is
given by a membership pyramid similar to that in Figure 4. A number of different
locations of the decision curve are shown as dashed lines. The degrees of
possibility and necessity that the event belongs to the subset C2-0 depends on the
relative locations of event and decision curve, and the decision curves are labeled
correspondingly. The figure shows how to interpret the possibility and necessity
measures. The possibility is positive if a part of the support of j is inside K, and it
equals 1 if at least a part of the core is inside K. The necessity is zero unless the
whole core is inside K. It equals 1 only if the whole support of i is inside K.

Trapezoidal membership functions are well suited for the discussion and
illustration of possibilistic concepts. However, a restriction to trapezoidal fuzzy
numbers has also practical numerical advantages because with this restriction and a
decision function which yields the values of p-(e,t) and VK(et) for any set (e,t)
one can compute I1K and NK by fast search algorithms.

2.4. Example.

We present an example of combined kill criterions for an armor plate
subjected to blast. For this example, we consider two types of damage: a failure
of the plate and a deflection greater than a threshold. The plate (or a component
behind the nlate) is "killed" if either of these criterions is satisfied.

Both criterions are formulated in terms of the following dimensionless
variables.

6



z
A= -

S

Bhr = 2 
(2.11) f h 

laeafe oaig

where z = deflection of the plate after loading,
s = distance of the charge from the plate,
E energy of the charge,
h = thickness of the plate,

,= yield stress of the plate's material.

Let the failure bound be given by the equation (Reference 5)

C 1 = B - B O = 0 (2.12)

let the deflection be given by the function

- = a + b B1 5
, (2.13)

S

and let the damage criterion due to a large deflection be given by the equation

C = a + b B 1 5 - A = 0 , (2,14)

where A= :H./s is a critical value for the deflection.

In the event space, the component (the plate) is represented by the vector

e ( h , . zcr ) (2.15)

and the thrcat is definC:! bv the vector

t =(E,s) (2.16)

Hence, the event space is four-dimensional in this example. The subset of killed
components in the event space is defined by

(e,t) ( K if Cl(e,t) 0- , or C2(ei )  t 0. (2.17)

The analysis can be simplified by mapping the four-dimensional event space
to a two-dimensional space with the dimensionless coordinates A and B. The

mapping is provided by eq. (2.11). The parameters a, b and the exponent 1.5 in
eq. (2.14), and the parameter B0 in eq. (2.12) are fuzzy numbers. Therefore the

decision bound defined by eq. (2.17) is a fuzzy curve in the B,A-plane. It is shown
in Figure 6. The support of the decision bound is the area between the two
outermost curves. The core of the bound is the curve running approximately in the
center between the support boundaries. It corresponds to the line 1ic-o=l (the
crisp solution of the decision equations). The straight vertical lines in the top part
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of the figure represent the failure bound (2.12) and the curved part of the bound
represents eq. (2.14). Events corresponding to a kill of the component are in the
lower right part of the figure. In that area the membership values of the possibility
of kill, PK, and necessity of kill, VK, both equal 1. Moving to the left, the necessity
membership vK reduces to zero at the center curve, at which point pg starts to
decline and reaches zero at the leftmost curve. The two surfaces pK(B,A) and
VK(B,A) define for a crisp event (B,A) the degrees of possibility and necessity of

kill.

In real applications, the input values of A and B are fuzzy. For instance,
when one computes the vulnerability of a given vehicle, then one might have the
exact values of the parameters har, and z, , but only a possibility membership
function for the parameters E and s of the threat. Then both coordinates A and B
of the event are fuzzy because both depend on the fuzzy threat parameters.
Moreover, because A as well as B depend on the same parameter s of the threat
they are "interactive" in the terminology of fuzzy sets. Figure 7 shows three
examples of such fuzzy events. We have assumed in all three cases the same fuzzy
value E of the energy of the charge and varied its distance i from case to case by
the (crisp) factor 1.32. Because the two coordinates B and Ai of the events are
interactive, the supports and cores of the events resemble slanted parallelograms
instead of being rectangles as in Figure 4. The boundaries of the decision bound
from Figure 6 are plotted in Figure 7 as dashed curves. One observes that the
degrees of possibility and necessity of kill increase as the distance between the
charge and target decreases, that is, as the event moves to the right and into the
subset corresponding to C>0.

3. Aggregation of Possibilistic Measures.

Section 2 describes the computation of the degrees of possibility and necessity
that an elementary system component is killed. The corresponding indicators for
higher level components and for the whole system are computed by aggregation
operations on the vectors of state, possibility and necessity of the elementary
system components. Now we shall discuss such aggregations.

The initial state of an elementary system component eEE is given by its state
value S(')1(e) which is either 0 or 1. The threat defines an event space G=(ExT),
and the decision criterions for the components e define in the event space subsets K
where a kill of the elementary system components is possible. Actually, because
we compute the possibility as well as the necessity of a kill, and assume a fuzzy
decision criterion we have two such subsets which we call k1I and RN, respectively.
(If the criterion is crisp, then the two subsets are crisp and identical). The
possibility that a fuzzy event g corresponds to a kill of e is in terms of the initial
state S(0) of the component and the possibility IlK that i-kII given by the formula

8



Hk1 )(9 = I ( - IIK( ) (3.1)

The necessity that the event corresponds to a kill of W is

NPI( - ) = 1 - S(0I(e'( 1 - NK(g-)) , (3.2)

where NK is the degree of necessity that j(KN. Hence, after the application of a

threat (pairing the initial state of the system with a threat), the state of each
elementary system component is characterized by two numbers HP ) and NP) in the
interval [0,1] instead of the one binary state indicator S (° ) . If everything is crisp
then eqs. (3.1) and (3.2) reduce to eq. (2.3) and the new state of the system is
indicated by the binary state vector S ¢1) . The possibilistic indicators provide
additional information, in essence telling one how close the event is to a threshold

of damage.

The degrees of possibility and necessity of killing a higher level cor-ponent f
are calculated in two steps. First, the results at the elementary level are aggregated
to obtain transfer values I1K and N K for the higher level corrponent. Then, these
quantities are used in equations (3.1) and (3.2) to calculate th-. possibility measures
for f. The transfer values are obtained as follows.

Let q= (_f,t) be the event in terms of the component and threat combination
for a higher level component with the parameter f. For simplicity we omit the tilde
which indicates fuzziness and assume from now on that all entities can be either
crisp or fuzzy. The aggregation of the transfer functions depends on the type of
dependency of f on the elementary components e. The simplest rules of
aggregation are those for a pure conjunction and pure disjunction. If the
aggregation of elementary system components to the next level is a conjunction
(component f is killed if all components el through e, are killed) then the transfer
values of the possibility and the necessity are aggregated by min operations
(Ref. 3, p. 318):

IHK(q)= min m Im I (gi) , (3.3)

NK(q) = min NPI(g,) (3.4)
i=1 .... ,m

If the aggregation is disjunctive (f is killed if either of the components el through

er is killed), then the max operator is used:

lK( = max Hk: 1(g,) . (3.5)
i=l ,...,r

9



NK(q) max Nk1)(gi) (3.6)

In practical applications, one needs more flexibility than provided by these
standard aggregations. Such a flexibility is obtained by attaching weights to the
lower level results, whereby the weights express the relative importance of a kill of
elementary level components for the kill of a higher level component.

Let ei, i= 1,...,n be the set of all elementary system components and gi be the
corresponding elements of the event space. Let wiE[0,1] be weights expressing the
relative importance of the decision function Ci, that is of the state of the element
ei, for the aggregation with respect to the higher level component f. (A larger
weight means that the killing of the particular component is more important; in
terms of pattern matching, the matching of a component with a larger weight is
more significant). Let the weights be normalized by

max wi =1 (3.7)
i =],...,n

The transfer values are obtained in case of weighted conjunction by the
minimization (Ref. 3, p.322)

HK(q) = min max { 1- wi , l )(gi) } , (3.8)

NK(q) = min max { 1- wi , Nk)(gi) } (3.9)

The corresponding aggregation for the weighted disjunction is

IHK(q) = max min { wi , ll.l(gi) } , (3.10)
i= l ,....n

NK(q) = max min { wi , N )(gi) } (3.11)

Eqs. (3.7) through (3.11) contain the unweighted aggregations as a special case
with wir1.

The degrees of possibility and necessity that f is killed are computed from the
transfer values in analogy to eqs. (3.1) and (3.2) by

-l(q) = 1 -S"°kf).( 1 - II(q) ) (3.12)

and

10



N 1(q) = I - s()f.( I - NK(q) (3.13)

where S(°)(f) is the initial state of the system component f.

The weighted aggregation is a convenient method zo compute different kill
categories from the same damage state of the elementary components. Thus, the
contribution of a component ei or subsystem fi to a firepower kill often will differ
from its contribution to a mobility kill, or to a specific mission kill. The weighted
aggregation provides more flexibility than a categorical assignment of the
components to groups corresponding either to "contribution" or to "no
contribution" to a specific type of kill.

4. Conclusions.

In vulnerability analysis, the available information often is imprecise but not
random, for instance if the threat or the target is a future system or when one seeks
to estimate the vulnerability of a system to threats within a finite range. The
analysis of this type of data is the subject of possibility theory which defines
measures for the possibility and the necessity that an approximately described
system is killed in the presence of an approximately described threat. Of these two
possibilistic measures, the degree of necessity is more importar" for applications in
vulnerability, because a positive necessity measure means that one can be more or
less certain that a kill takes place.

The input for vulnerability estimates based on possibility theory consists of
approximately given threats and approximately described systems in addition to
approximate decision functions for the damage of elementary components of the
system. The user has a great freedom in defining the uncertainties and the theory
takes into account all these inaccuracies in a semantically correct manner. Equally
flexible is the aggregation of possibilistic damage indicators of elementary system
components to obtain the degrees of possibility and necessity that the whole system
is killed. By using proper weights in the aggregation process one can obtain the
results for various kill categories with the same computer program.
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